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A STUDY OF SCATTERING FROM E-PLANE

CIRCUIT ELEMENTS

This study contains two parts. In part one, a new analytical technique is

introduced to characterize the scattering phenomena of a number of planar E-plane

obstacles. This technique is based on the spectral domain method combined with

residue calculus. This is the first time the spectral domain method has been used to

solve a waveguide excitation problem. It provides some attractive features. For

instance, it can handle a wide non-touching E-plane fin on a dielectric substrate; the

method deals with inhomogeneous algebraic equations instead of integral equations;

and also the spectral domain Green's functions have simple closed-form

expressions. The calculated results for a simplified case are compared with existing

data, and are in good agreement. Several curves, useful for E-plane configurations,

are included.

Part two presents an analysis and design of an evanescent mode bandpass

waveguide filter with non-touching E-plane fins. The theoretical analysis is based

on the generalized scattering matrix technique in conjunction with the spectral

domain approach, which is described in part one, and mode matching method. The

method used in this study takes into account the dominant as well as the higher order

mode effects. The measured filter responses in Ka band (26.5-40.0 GHz) are in

good agreement with those obtained by this analysis.
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PART ONE

SPECTRAL DOMAIN ANALYSIS OF SCATTERING

FROM E-PLANE CIRCUIT ELEMENTS
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I. INTRODUCTION

Recently, finlines [1,2] and other E-plane structures [3,4,5] have found

wide applications in millimeter-wave integrated circuits. Their advantages over

conventional microstrip at millimeter wavelengths include: reduced radiation, less

stringent tolerances, compatibility with hybrid devices, and ease of transition to

standard waveguide. A number of passive, active and non-reciprocal components

have been developed with the E-plane technique. One of the key elements for

passive E-plane components is the E-plane strip that is inserted in the middle of a

waveguide parallel to the E plane, as shown in Fig. I-1. A comprehensive design

process of E-plane bandpass filters has been reported [6]. The E-plane fin described

in Fig. I-1 is an inductive element. Its equivalent circuit is shown in Fig. 1-1(c).

The analysis of the E-plane fin connecting the top and bottom walls is relatively

straightforward [6], because the problem is two-dimensional. The non-touching

E-plane fin described in Fig. 1-2 is the more general form. It contains both inductive

and capacitive elements, as shown in its equivalent circuit. It is more flexible for

design. On the other hand, no extensive and accurate characterizations of

non-touched E-plane fins seem to exist. A method based on a variational technique S

has been introduced for a special case where there is no dielectric substrate inserted

in the waveguide [7]. The method in [7] is useful for a narrow strip, because only , 4(

one current component along the E-plane direction is used and the assumed current

distribution is constant in the axial (Z) direction.

This study introduces a new analytical technique to characterize the

scattering phenomena of a number of planar E-plane obstacles. For instance, it can

handle a wide non-touching E-plane fin on a dielectric substrate. Unlike the method

%.
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based on the variational technique, scattering coefficients of the dominant, as well as

higher-order, modes can be derived. The incident mode can be either dominant or a

higher-order.

The method in this study is an extension of the spectral-domain method

commonly used for characterizations of eigenmodes in a transmission line on a

multi-layer structure. It is extended to the excitation problem and hence provides a

set of algebraic equations corresponding to coupled integral equations that would be

derived in the space domain. Compared to the integral equation method, the new

technique has a number of advantages. For instance, algebraic equations are easier

to handle numerically. Also the spectral-domain Green's functions have simple

closed-form expressions. Compared to the variational method [7], the present

method is not only more versatile but also is attractive from a computational point of

view. In the new method, it is necessary to calculate the eigenvalue of only the

particular scattered mode of interest. The variational method requires evaluations of

all eigenvalues. Furthermore, the method in [7] assumes that only the TE- modes

are scattered. By the nature of the formulation, the present method contains both the

TE- and TM- modes in its formulation.

The calculated results fora special case (el=E 2 = 3= 1, See Fig.I-2 (b))

are compared with experimental and computed data in [7] to check accuracy.

Several useful curves of normalized input admittance and equivalent circuit element

values are presented for a number of different parameters of the structure. Those

data are applicable to the design of bandpass filters, diode mounts, and tuning

elements of the form described by Konishi [3,4,51.
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Fig. 1-2 (a) non-touching E-plane fin in a rectangular waveguide,

(b) End view, (c) Side view, (d) Equivalent circuit ofthe

non-touching fin.

% %p



6

T C

Maetchi

T C

(a) n

TC

Jii2

(b)
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II. FORMULATION

In this study only the unilateral E-plane fin is treated. Application to a

bilateral configuration is straightforward. In reference to Fig. 1-2, the strip is

assumed to be perfectly conducting and infinitesimally thin. The first step of

analysis is to find the scattering parameters at the edge of the non-touching E-plane

fin. Then the normalized admittance and other equivalent circuit element values can

be obtained from the scattering parameters. The basic idea used in the solution of

this problem is described briefly as follows.

For a given incident field Ei , the Fourier transform of the field scattered

by the strip, say Ey. can be obtained by using the spectral domain technique. On the

other hand, the scattered field Ey can also be written as a sum of the eigenfunctions

with unknown coefficients. Taking the Fourier transform of the sum and applying

the orthogonality of the eigenfuctions, one determines the unknown coefficients,

which are related to the scattering parameters. The non-touchting fin can be

expressed by its equivalent circuit. When the waveguide is terminated with a

matched load, the values of the equivalent circuit elements are calculated from the

real and imaginary parts of the normalized input admittance. The procedure is given

in detail below.

A. MODAL EXPANSION OF SCAT'TERED FIELDS

In this study the harmonic time dependence is the form in e jt, but this

term is suppressed throughout the analysis for convenience. Consider an incident
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electric field Ei which comes from left side of the waveguide as indicated in Fig.I-2,

the modal expansion for the Ey component of the scattered field is given by:

E,s(x, y. Z)'- Esz~sp+ E~ssM

E E C,;.-m(x)cos(a.y)e.JP-.(l:W 2) z><-W2

SDn(x) s (ay)EeP..z+ E/2) -f-) z<W/2

+ ". , .+. .(x~cos(ay)e-jP-..z-wr+,zj> W/

E ED,nl4n(x)COS(anY)ejiP;.(2-W/2), z>W/2-(W12
i-1in-I

+i(X E Er~jl I.(xiro(a -h)r ... eJcosh [+ r( .+e-) Iz1 -< 1 h 12

Csinh y,.(a-x), h1  I 2<X

A.'(x nfh I y2,,(x - hl)] + B,,,cosli [y2,,,(x - h,)], A1 <x <h+ '2 (1-3)
sjlh [-y' ( -x)], hl+h 2 <X<a

and
fl7T

a =- (1-4)
" b

a+ &2.= k+ -Y2~ 1-)

(1-5) 5

a.2 +fl.,. - ' + j' w(1-6



Here co and go are the permittivity and permeability of free space, respectively; ei

is the relative dielectric constant in the region i; an is the nth eigenmode

.l

corresponding to the Y direction in the waveguide; yim and rim are the mth

eigenmodes of LSE- and LSM-modes in the partially filled waveguide in region i,

and can be obtained by solving the following eigenvalue equations [8], together with

equations (1-5) and (1-6).

+ Ttanh ( h2)

tah yhl ( nh h
Ih + "2(vh3) 0 (1-8)

YI Y3 ) + y tanh (Y2h2)
tanh (Y3h3 h

13 tnh(y3 h3) +y2tanh~y2h2)
y, tanh(yh,) 1 E3= 19

e1 I + y3tanh(yh 2 )tanh(y3h3)

where and I3',,m are the propagation constants of the mnth LSE- and

LSM-mode, respectivelty. An equation similar to ( 1-1 ) can be written for Ez

component. If the induced current components Jy(yz) and Jz(y,z) are provided the

scattered fields E' and E' can be expressed as follows:

1

+ _ P . .. -V l i,;K, %t++ ,i . . .. + - e g : : , "" - -

V-' .. dL%,P
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M ;(, z .) - f _ so dz' (Gyy(X. y - .'.z - Z')J,(y'. Z')

+ G,(x, y - y',z - z')J,(y', ')1 (1-10)

, Yz) -f bdylJ d.i' G,,(x, y -y', z -z')J,,(Y', ')

+G,,(x, y - y', z - z')J(y', z')]. (I-II)

where G /etc. are the Green's functions in the space domain. One way to find Jy

and Jz is the application of the integral equations which require that the total

tangential electric field components to be zero on the strip.

EI(x, yZ) +ES(x, y, z) -0 (x-.hI+h , y, z on strip).

El(x, y , z)+ Es(x, y, z) - 0 (1-13)

The integral equations are

EI(h, + h2 , y, z) + bdyI W/2 dz'[Gy(h1 + h 2 , y - y', z - z')J,(y', z')

+G,,(h 1 +h 2 , Y- Y"Z- Z')J(Y"z')] o (0< y<bI zi< W )

(1-14)

EIh+ h2, yz) + Jbdy~j W/3 dzIGs,.((h + h2, y - Y", Z -Z')J,(y" Z)

+,,(h2h, y- y,, z z,)J,(y',I')-o O<y<b,lzl <  •

(1-15)

, = = i .= i i i id i I ° I - I i I - i i ... •PON



I1 W,

If Eqs. (1-14) and (1-15) are solved, Jy and Jz can be obtained. These Jy and Jz are

then substituted into Eqs. (1-10) and (I-11) so that Ey and Ez are available

everywhere. If the scattered field coefficient of a particular mode is needed, the E

and E can be used in ( I-I ). Each coefficient may be found using the orthogonality

of the expansion functions. Although the above formulation is correct, such an

approach is not adopted in this study. Instead, a corresponding procedure is applied

in the Fourier-transformed domain. There are two reasons for using this new

technique.

(1) In the Fourier-transformed (spectral) domain, coupled algebraic

equations instead of coupled integral Eqs. (1-14) and (1-15) are involved.

(2) Derivation of the Green's functions in the space-domain is very

complicated. In the spectral-domain, the Fourier-transformed Green's functions are

given in closed forms.

The Fourier transform is defined as following:

/ beja dyf f(y, z) ei dz

The Fourier transform of Eq. (1-1) at x=hl+h 2 is given by
2 -

e~~~~~. r. ,V r.rr' %.
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-,E;LSP+ 
4~ sm -J"4/2

CI

bBasinh(y3.uh3)c;[( + -- W2I

sin sin 2- =----

e JAIW/
2

+ C.+. (.8 +~ -,, + ... . )

+ c ,,5(/3 -Ji,3,)j *D-- "", J .) e

mJ'.Pk'm, 1 J

+i W,'+ kbsin(v ih,){ in~ ( / 8(/- I3,M,) W ""

n-

+, ;.. +

+? + ne

D~Iv8(P - I i~iP. ft - IX. -O.)2

(I-17)

where 1% W.

8.. n0 k 0 n-O.

The coefficients C~ and Dn can be solved by the orthogonality of the

In mn

eigenfunctions, if the scattering field is known.

'I, * .-.. ,,.," ", % " ,.,.,,. ,, , , , ,,,,, "SZ,. ,. , .; ..... .;, ..:...........-,..;.. .. -.. ........
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B. SCATIERED FIELDS IN SPECTRAL DOMAIN

Next step is to obtain the scattered fields in the Fourier-transformed

domain. To this end, the spectral-domain technique needs to be extended to the

excitation problem. The Fourier transform of Eqs. (1-14) and (1-15) at x=h+h 2 is

given by

IC€(.,P)+ f(a,0) , ,(1-19) 1%

where

A/(a.. #) - ,,(a., $)4(a., #) + c¢,(a,p )i(=.,1e) (1-2o) .,

- ¢,(a., P)- (a.,#)+ 7,,(,,, #)i( 3 , ) (1 - 21)

are the scattered electric fields in the spectral domain. Gyy, 0y., and can be.-

obtained by the immittance approach [9] ( Appendix A). Notice that the right sides "V

of Eqs. (1-18) and (1- 19) are not zero. This is because the application of the Fourier

transform requires use of fields not only on the strip but also the fields outside of

tthe strip. Hence, Eqs. (1-18) and (1-19) contains four unknowns Jy, , ESand -.

In the process of solution by Galerkin's method, i5 and I?- are eliminated. To this

end, Jy and J are expand as follows:

(1-22)

(1-23)

-.,

*'*\-%% '9'~ '."e,* ..... ~

~q \'~r9 \,~J% %,...%,
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where aj and bi are the unknown current coefficients and need to be determined.

The Ji and Jzj are basis fuctions. They should be selected in accordance with

criteria that wil be discussed in the next section. Substituting Eqs.(I-22) and (1-23)_ 4'.

into Eqs. (1-18) and (1-19) and taking the inner product of the resultant equations 4..

with suitable basis functions, we may use the Parseval's relation to eliminate 9s and

Ez. The inner products of Es and 1yi, and ts and Jzj are zero, because Jyi and "zj are

Fourier transforms of the functions that are nonzero on the strip while Q, and E are

transforms of the functions nonzero outside the strip. The results are given by

I J

KYa,+ Kb -,,. p1 2 .. " (1-24)

! J

L ,KYa,+ E :b-Sq, q-, 2 .. J (1-25)
I-i i

where
E,. f ®~(aR,,, .(a., ) (a,,P) df t26 -

ff-00

K;: - KJ,,
00 (1-27)

= E Ji;(a,,,13)G(a,3,,.(a,,,,)d3 (127
n-- 0 -o o7 ; .F

00

It - _ : -.

00

s,, Go/",; .~ ;(.a (1-29) .. o'
s.,- Y Y (a.,/ 9,(a., 0) d# 3o: .- '-.

0000 (1-30)

-10 00

wr-a .te

where *indicates the complex conjugate. .

1

~ ~ *. -. " 1 * "
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For a given incident field, Eqs.(1-24) and (1-25) are solved, and ai and bi

can be obtained. Hence, J and Jz are now known. The scattered fielts in the

Fourier-transformed domain, which is described by Eqs. (1-20) and(1-21) , now are

completely determined. Since Gyy I Gyzs Gzz Jy land Jz are all known. %

C. SCAITERING PARAMETERS

The scattering coefficients Cn and DIn can now be obtained. Let us

express the left-hand side of Eq. (1-16) with Eq. (1-20). Since Jy and Jz are now

found, G and G are given in closed forms: (Appendix A) "

Z IN,,'+ZhN2 (1-31)

d- ft ( - NNJ,(1-32)

d" _ ZAN2 + ZN2 (1-33)

where Ze, Zh, NY, and Nz are given in Appendix A. The left-hand side of Eq.(I- 17)

is completely known. Furthermore, the left-hand side contains poles at P=-Omn and

--n' since they are zeros of the denominators of G0yy and 0yz. These values

provide the eigenvalues of the LSE- and LSM-modes, Tim and Y'. The right-hand

%%'

%",,

"a



16a

N .

side of (1- 17) contains [SE poles at '3 nin the C - term and at +Pmn in the C+

term. It contains [SM poles at -3 in the D_ term and at +IPtmn in the D+
4nin Inn m

term. Therefore, C1 and D1 can be obtained by residue calculus. T7his process

corresponds to the use of the orthogonality relationship to find the modal coefficients -

in the space-domain. The results are given by:

C4 tim W(1 ft 13,.) T jtsnh~3,,Ii)

W=0,1 2,m -1. 2,3 ... aSm-(2 n-0) (1-34)

0 ±,O; j(3 1,,),(. jb sinh (y3,,h 3)

(n=1,2,3-, m -1,2,3* .) (1-35)

It should be noted that, the above equations are simplified in the case of E-plane fins

connecting the top and bottom wall. Since there are no field variations in the .5

y-direction and only TEno modes are scattered for a TE10 excitation, we have only

one equation (1-18). All the Fourier-transformed quantities are functions of ~3only.

D. NORMALIZED INPUT IMPEDANCE AND EQUIVALENT CIRCUIT

ELEMENTS

The non-touching E-plane fin shown in Fig. 1-2(a) may be represented by

an equivalent T-network, as shown in Fig. 1-2(c). When the waveguide is

'if _P e * rr . . . .
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terminated with a matched load, as shown in Fig. 1-3(a), its equivalent circuit is,,..

shown in Fig. 1-3(b). The normalized input admittance may be represented by

Y1- G. + jBR. (1-36)

where R is the reflection coefficient for the dominant mode, and can be determined

in the present method by means of Eqs. (1-34 ) and (1-35). The normalized

reactances XI and X2 can be determined, after Yin in Eqs. (1-34) and (1-35) is

obtained. The expressions of X1 and X2 are given by Eqs. (1-37) and (1-38).

(APPENDIX B)

Bi. 2 + _in 1 1/2 (1-37)
? ( + - Gi. B i + G?- .
Bi. .7

, 2 (1-38)

The sign in Eqs.(I-37) and (1-38) can be determined by using the Foster

reactance theorem which require dx/do > 0 for a lossless element. We can also

determine the values of C and L in the equivalent circuit Fig. 1-3(b), once X2 is

found, under the assumption that the variations of C and L with frequency are small.

The capacitance and inductance can be obtained by solving coupled equations.

ML--" X2  (1-39)
X2v

1 dX2
L+ ( -- 40

-..- d. -
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III RESULTS AND DISCUSSION

A. CHOICE OF BASIS FUNCTION

In principle any kind of basis functions may be used as long as it is

nonzero only on the strip. However, due to the variational nature of the spectral .0

domain method, the efficiency and accuracy of this approach depends greatly on the

choice of basis functions. For rapid convergence of the solution, the functions

should satisfy the edge condition [10]. Also it is desirable that the Fourier

transforms of the basis functions are available in a analytical form. With the above

consideration, the following set of functions are employed.

W-V

sink(_y,_+_v)] cos [(21-/)(2 +
J,(y'Z) -2z' 1i-42)

where k and I are integers, and i and j are given by a suitable combination of k...

and 1. The basis function Jyl(Y,Z) (I =1 and k =1 ) is shown in Fig. 1-4(a); and ..

Jzl(y,z), corresponding to I =1 and k =2, is expresed in Fig. I-4(b ). The Fourier .

transforms of the basis functions are given by Eqs. (1-43) and (1-44). ,,

N
.. ' ..; ... ..... .,. ,..'.,. . .. .,.. ..,... ,...-. .' .. '.. , .. ,.. .. . ........ ....' .. ...... ,.,. ,. .....

.' ,N' ' x,,.', _ * ,, si"n > ,' , ' [k. -..j ____ ".,.;' , "55. ,_ """"",""""""", , """" :., €"' ,
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Jyi (af,) - 0.5I e .Sj(21-1)ir [Jo I 0.5(21-l)t + a1 dI

-e'.(21"I*Jo I ai d - 0.5(2t-l)7c I]} {0.25wlt e0.Sj(k-l)n

[J o I 0.5(k-1)ic + 0.5pw I + eJ(2 1O)x Jo I 0.5ow- 0.5(k-1)n I ]1

(1-43)

Jzj(c,)= 0.5d e 0.5j(21) [ Jo I 0.5(21-1)7c + a1 d I

+ e-j(2" t) Jo IctI d - 0.5(21-1)7r I]} {0.25wc e

[Jo I 0.5(k-1)n + 0.513w I - e'J(2i-l)x Jo I 0.5ow- 0.5(k-1)n l ]}
( 1-44 ) '.

where J. denodes the zero-order Bessel function of the first kind.

B. VALIDITY CHECK

To compare the present method with the experimental and computed data

in the previous publication [7], we considered first special case e=e2=- 3=1. We

assume that a dominant-mode incident electric field Eyl0 = -j1 10 4(x)e-JflOZ,

where 1 (x) is defined in Eq. (1-2), comes from the left of the waveguide. The

numerical result has been checked by the power conservation law in which the

equation IRI2 + IT12  I has to be satisfied, R and T are the reflection and

transmission coefficients for the dominant-mode, and can be determined from C.:

and C' , which are given by Eq. (1-34). The calculated results for different

10,%

Z:.
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Fig. 1-4 (b) Current distribution of basis function Jzl
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parameters are given in Table 1. It shows that IRI 2 + ITI 2 is essentially 1. The

convergence test with different number of basis functions has been performed.

Although accuracy can be increased with a larger number of basis functions,

computation efforts also increase.

A comparison of the normalized susceptance versus frequency between

the numerical results obtained by present approach and those given in [7) is shown

in Fig. 1-5(a) and (b). It is found that the numerical results agree well with the

experimental data and Chang's data. It is believed that the present method is more

accurate and can be improved systematically with the use of more basis functions.

C. RESULTS AND DISCUSSION

Figures 1-6(a) and I-6(b) show the variations in normalized admittance

versus frequency with different values of dielectric constant of the substrate in

Region 2. As the dielectric constant of the substrate increases, the resonant

frequency at which the Bin becomes zero decreases. This phenomenon happens

because as the dielectric constant of the substrate increases the wavelengths

corresponding to each mode become shorter. The resonant frequency and the

characteristics of input admittance of the structure can be controlled by the dielectric

constant of the substrate.

Figures 1-7 and 1-8 show the variations of normalized admittance versus

the height and width of the strip at different frequencies for an E-plane fin inserted in

a Ka-band rectangular waveguide. As shown in Fig. 1-7, for a fixed width of the

fim, the shorter the height, the higher the resonant frequency is, because the shorter

V
JP- . - k . . .. . " 1

,I,.,il. , ,% % ,, % -e -"% ,% ..% - q % •" " . .,• %,% % -^ : ,,.%.,, % ,. ." -,.1. ,L q r
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fin corresponds to smaller values of capacitance and inductance in the equivalent

circuit. For a fixed height of the fin (Fig. 1-8), the higher resonant frequency is

related to a narrower fin, which has smaller capacitance. One way to obtain a given

resonant frequency of this structure, is to change the dimension of the fin.

Figures 1-9 and 1-10 show the values of X1 and X2 versus the height d

and the width w of the strip in an X-band rectangular waveguide. It is noted that for

a given frequency, X1 is not sensitive to d, whereas X2 increases with d. When w

increases, X, increases. On the other hand, X2 decreases with w for a higher ".

frequency and increases in a certain region of w for lower frequency. (Curve A in

Fig. 1-10(b)). Figures I-I1 and 1-12 are the data corresponding to those in Figs. 1-9

and 1-10 except that the frequencies are in the Ka-band. Figures 1-13 and 1-14 show

X1 and X2 versus frequency with different values of height and width for the

Ka-band waveguide. In Fig. 1-13 it is seen that for a narrow strip X1 varies slowly

as frequency is increased, while X2 varies faster for a narrower strip than for a wider

one. Those informations are very useful from design point of view. For instance,

to control the resonant frequency of this structure, it is much better to tune the height

of the fin instead of changing its width. In this way, X2 can be changed without

affecting X1 since only X2 is sensitive to the variation of the height of the fin.

Figure 1-15 shows the variation of normalized capacitance C and

normalized inductance L versus d. It is noted that there are two regions. In one of

% m "tim %, %, '% ", % " • .. ...... . ....... . . %. . ........... . .. . . •. . .. S % %.
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them (approximately corresponding to d=w, in this calculation w=1.Omm) C

increases and L decreases as frequency increases. In another region C decreases and

L increases as frequency becomes higher. It is conjectured that this phenomenon is

related to the field distributions and to the use of the equivalent circuit chosen here.
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IV CONCLUSIONS

A new analytical technique has been developed, that can be used for

characterizations of the scattering phenomena of planar E-plane obstacles. The

numerical results for a special case agree well with experimental and published data.

The curves of normalized input admittance and equivalent circuit element values are

presented for a number of different parameters of this structure. This technique is

believed to bo useful in the design of microwave filters and other planar circuit

components. .,.
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PART TWO

ANALYSIS AND DESIGN OF EVANESCENT MODE

WAVEGUIDE BANDPASS FILTER WITH

NON-TOUCHING E-PLANE FINS

N, . . . . .
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I INTRODUCTION

In the late 1950's Jaynes [1] and Edson [21 proposed that resonators built in

cutoff waveguide may be used in filter design. These kinds of filters are called

evanescent mode ( or 'ghost mode' as Jaynes called it ) filters. Microwave bandpass

filters using evanescent modes Lave been designed successfully [3,4,5]. The

evanescent mode bandpass filter has several advantages compared to the conventional

type of bandpass filters (waveguide above cutoff, coaxial line etc.). For instance, a

sharper transition to out-of-band rejection can be obtained on the higher frequency ,p.-.

side. Evanescent mode waveguide filters are also smaller than traditional waveguide

filters. A waveguide operating below its cutoff frequency is basically an inductive

element [5,6]. Suitable capacitive elements are needed to construct an evanescent

mode waveguide bandpass filter. Evanescent mode filters using conventional

capacitive elements such as tuning screws [4,5] are costly and difficult to mass

produce because of their complicated structure. Non-touching E-plane fins[7], which

are easily to fabricated, are proposed in this study as the capacitive elements. The

filter structure, shown in Fig. -1, consists of a number of non-touching E-plane fins

placed in a rectangular waveguide below cutoff. The fins may be metal only or

supported by a dielectric layer. The input and output portions of the filter are coupled

to the external circuits via double step waveguide junctions. The larger waveguides

operate above the cutoff frequency. Since the capacitive elements utilize a printed

circuit structure, they are suitable for mass production at low cost.

The initial approach to the synthesis of an evanescent mode filter was based

on image-parameter theory [3]. This approach cannot be used for exact design

% % '

rd

5.

j",'.. a,%.e'.. .' .'-€.' '- .. -.' .'- '- . " % --.. .-. " .' ',..',,- ," %,-% " "L'%'2"," ',',,''." ,."%." " , %. • . %" ." " " • '.' ".". -- . - ..- ,e .."
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.. .

technique to obtain the scattering matrix description of the evanescent mode filter.

The insertion loss and the return loss of the filter then can be obtained from the final

scattering matrix.

Filters designed with the present technique have been tested in Ka band

(26.5-40.0 GHz). Good agreement between theory and measurement is observed.

.,.JU

,%. .,
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Waveguide

Dielectric layer

Non-touching fins

Evanescent mode
waveguide

Double-step junction

Fig. Il-1 Thie strLICturc of evancisceint mode wavagLlide Filter withi

non-touching E-plane fins.
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II. ANALYSIS AND DESIGN PROCEDURE

The analysis and design of an evanescent mode waveguide bandpass filter %

with non-touching E-plane fin is based on the generalized scattering matrix technique

in conjunction with the spectral domain approach and the mode matching method.

The study begin with brief description of the generalized scattering matrix. Then the

scattering matrix representations for the double-step junction, the non-touching

E-plane fins, and the evanescent mode waveguide section are obtained by the mode

matching technique, spectral domain method, and waveguide theory, respectively.

Finally, these scattering matrices are combined to obtain the final generalized

scattering matrix. The filter response is calculated from the final scattering matrix.

A. GENERALIZED SCATTERING MATRIX

The concept of a generalized scattering matrix, introduced by Mittra and Pace

[10], is closely related to the scattering matrix of circuit theory or of microwave

network theory. It differs by including scattering of all modes, so that the scattering .. '--

matrix will in general be of infinite order. In the following discussion, the term

scattering matrix " will mean "generalized scattering matrix ."

The scattering matrix can be defined for a junction discontinuity at which the

fields may be expanded in modes, such as the double-step waveguide junction show

in Fig.II-3. Consider that the mnth TE mode is incident upon the plane z=0 from the

larger waveguide I and waves are reflected back into waveguide I and transmitted

into smaller waveguide II. If the amplitude of the mnh TE incident in I is normalized
'. V.
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to unity, then the amplitude of the pqth TE scattered mode in waveguide I is SEE
II

(pq,mn), and the amplitude of the pqth transmitted TM mode in waveguide fl is S I'I

(pq,mn) . The terms sME (pq,mn) and SE (pq,mn) are the generalized matrix

elements of SME and SEE respectively. The other scattering matrixes , such as

SEM sEE and SMM , etc., may be similarly defined [10,11]. In conventionalIIn' uII' 111,,...

scattering matrix formulations, the propagating modes are normalized so that a mode

carries unit power. Since the generalized scattering matrix includes evanescent

modes, such a normalization is inappropriate. One consequence is that the scattering

matrix is not symmetric.4,,

In the notation used above, the scattering matrix relates the excited modes to

the incident ones via:

As A' SI I SIII Al (11-1

Bs Bi SIII SII II Bi I-1)...-

The superscript s indicates scattered fields, and i expresses the incident fields. The

general element of S is Sxy (pq,mn), where x and y = E or M, represent a TE or TM

to x wave; i and j = I or II indicate the Region I or Region II; m, n, p and q are "

integers corresponding to different modes. For example, S 'M(11,10) repressents

the ratio of the amplitude of reflected TM11 in Region II to the amplitude of an . .
1'

incident TEl0 wave in Region 1. In more detail the above equation runs as follows: .7

-.. %

", i
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A S(10) SEE(1l'1O) SEE(10,2 0) S EM (10,01) SEM(10,0 2 )... Ai(10)E I I I1I1II IIIl
A(20 SEE(20,10) SEE(2o,20) ... SEM( 2Q,01) SEM( 2Q,0 2)... A 1(20)

1ifI if III Mk
AA(O2) S'E(02,10) SMF-(02,20) ... SMM( 0 2,0 1) SMM(02,O2 ) ... A (02)

E IIiI fill iI

BS20 SEE( 2 0 ,1Q) SEE(2O,20) ... SE(01 SEM1! 20,0 2) ... 20BE(20) II Ill1 SI B(0

II EI

B (01) __(11)SM(12).. NM0,1 SM(0,02)... B(1

11-2)

Theoretically the generalized matrix is of infinite dimensions corresponding

to the infinite number of eigenmodes. The matrix is truncated to finite size for

numerical calculations.

The generalized scattering matrix technique is useful for dealing with

structures containing several discontinuities. For example, the structure of

evanescent mode waveguide filter with non-touching fins consists of three portions:

the double-step waveguide junctions and the non-touching E-plane fin portion, and

the waveguide below cutoff. Each portion of the structure can be represented by its
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corresponding scattering matrix. These matrices are then combined to obtain the

scattering matrix of the filter structure. The insertion loss and the return loss can be

obtained from the related elements of final scattering matrix.

B. SCATTERING MATRIX REPRESENTATION OF

A DOUBLE-STEP JUNCTION

In this section the scattering matrix representation of a double-step junction V

is derived via the mode matching technique[12,13]. As shown in Fig. 11-3 Region I

represents the larger guide and the smaller guide is denoted by Region II. The field N

is derived from the electric vector potential F and the magnetic vector potential A ZW',

114].

A
E=-VxF+VxVxA/j 0t o  (11-3)

H =VxA+VxVxF/jc. o  (11-4)

In this study, it is convenient to choose

A = x (I1-5) -

F = ox (11-6)

where x' and 4 are the scalar functions which represent the electric (TE) wave and

magnetic (TM) wave transverse to the x-direction, respectively, and x is a unit

vector in the x-direction. These potentials are extended in terms of their

eigenfunctions which must satisfy the boundary conditions. The potentials in each

:-f
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region can be expressed as follows:

M N-1

i=Y X [a mexp( kizhmnz )+ bimexp( kihmnZ )]Pjmn(x,y) (11-7)%
m=1 n=-O

M-1 N

= XX Cmn xp ~izemnz) + dimn epkizemnz )]Qimri(x,y) (1-8
m=-O n=I

(The notation used in this part is described below:%

X i c jdlI

1 = , n or mn indicates mth, nth or mnnth mode

d=hore,h:TE-to-xfield; e:TM-to-xfield

j = 1, 2, or 3 indicates the variable in the region 1, 2, or 3 of a.

the smaller waveguide.

c =x, y, or z indicated the x- , y- or z-direction, respectively

i =I or 11, 1: larger waveguide; 11: smaller waveguide

- ------ - indicate the variable)

where

Pimn(X,y) =Rim(x)Sin(Y) (11-9)

Qim,(x,y) =Tim,(x)Vin,(y) H 1-10)

are the eigenfunctions of the TE-to -x and TM-to-x field, respectively. In region 1,

these eigenfunctions are represented by:
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RIM(x) = Nrm sin (mxrx / a,) (-i

Sjn(y) = N~ cos( nicy / bl) (1H-12)

Nrm4 )(8mo-I )/ a, N5jn= q (8,n+ 1)/b (H1-13)

Tlm(x) Nt~mcos( m~x/ a,) (H1-14)

Vin(y) =NvInsin (ny 11 bl)(1-1)'

Num =-4 (Smo+ 1)/a, Nv~ - no- 1)/a 1  (H-16)

m =0,1, 2,~ -m-1 n=1, 2,3, - N

where 8Mand Sno are the Kronecker delta functions. In Region HI, the

eigenfunctions are given by:

SIuq(y) =Nsujq cos[( qx bl)(y-y 1)) (11-17)

Nslq= (S qo + 1)/b 1  H-1~18)

Nrmlp sin kllxlhp(7-- xi) XI <x <x I +h I

NrI~p il I~hp( xh 1)
R11p(x) x, + h, < x <,+ hl-i h2

+ Nruampcos krll2hp( x-x I-h 1)

NrIpsin kIlx3hp( x-x-a) x,+ h, + h2  + a

Nr113(11-19)

p=1,1, 2 ,~ -p q0, 1, 2, -Q-1

Vgjqy) =Nvllqsin [( q~/ b 1)(y-y 1)] (1-20)

Nvu~q =4(8no- 1)/a 1 (1-21)
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Ntilp cos knxlep(x -x) x 1 <x<xI +h I

Ntii2p cOs kllx2ep( x-xl-h 1)
Tlp(x) =X + hi < x < xI + hi+ h2

+ Ntmp sin kiix2ep( x-xl-h1)

Nt1i 3psin kli 3 p(x-xl-a) X+ h1 + h2 < x + a

( 1-22)

p---0, 1, 2, P-1 q= 1,2,3," Q %' .1

where Nrilj and Ntj j = 1, 2, and 3, are normalized coefficients of eigenfunctions

RIm (x) and Tmn(x) of the smaller waveguide in region j, respectively. They are

given in Appendix C. The mth eigenmodes of TE-to-x and TM-to-x fields in the

partially filled waveguide in region j are represented by kllxjhm and klixjem (They

correspond to yim and Yim in Part one of this study and can be found as described

in Part one). Here kizhmn and kizemn are the propagation constants of the mn th TE- *% -'

and TM-to-x fields in the z-direction, and must satisfy the following dispersion .

equations

k2 izdmn + ko2 ( m / al)2 + ( nn / bl)2  ( 11-23)

k2 iizdrn + kJ2 =k2iixjdm + (nit / b)2  ( 11-24) .

%. %

~ ~ 'p~9~ . ... % .*% '.. *. . '.. '.
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Fig. H1-4 Cross sectional view (at z =0) of double-step waveguide junction
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where d =h or e, j=1, 2, and 3, k is the wave number in free space, k. =r-
0o 1 0

and F_ is the relative dielectric constant of' the smaller guide in region j. The

coefficients ain bimn, cimn, and dimn in Eqs. (11-7 ) and ( 11-8 ) correspond to

incident and reflected waves and are related to each other by the scattering matrix.

The scattering matrix can be determined by matching the tangential fields at the step .. ~

discontinuity at z =0. ( Fig. 11-4)

Eimy I at z~ = E1x,y Iatz__o in area A2

Hix~y at z=o =HIlx,y lat z~ in area A2

Eix,y Iat z,=o 0 in area A, -A 2  (11-25)

Applying the orthogonality relationship between potential functions leads to the

matrix equation:

Mal 0 -VbUj 0 Aimn -Ml0 VblI 0 BImn

0 VcI 0 -MdlI ni 0 _VcI 0 MdII l!

MbI Mci -Vail Vdll Bllpq -Mbi Mci Valu VdII AIIpq

Val .Vdl Mbll Mcli Dlipq Val VdJ Mb!! -Mcii) ClIpq%

MI M2

where Mal, Mci ... ect. express matrices. For instance, Mal is a matrix of dimensions

PQ x N. VbII, Val ... are diagonal mnatrix of dimensions PQ x PQ, MN x MN.,

% %
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Amn, DlN ...ect. are vectors of dimensions MN or PQ, and are given in Appendix D.

The scattering matrix of the double-step discontinuity is then given by
Sd ll Sd 1

Sd M 2 -1 M 1

(11-26)
[ , S d 2 1 S d 2 2 .1( 

1 - 6 ); '',
.: %

To check the validity of the calculations, we calculated the scattering

parameters of a double-step waveguide discontinuity from Ku to K band ( 15.8 x 7.9

mm2 to 10.7 x 4.32 mm2 ) and compared results with Arndt and Wriedt 's[15]. The

results are shown in Fig. 11-5. They are in good agreement. Also, the magnitudes

of the scattering parameters of resonant irises with finite thickness t ( Fig. 1-6) are

obtained by combining two step junctions with a evanescent mode waveguide of

length of t. The numerical results are compared with available data [12] and are

shown in Fig.11-7 and Fig. 1-8. Once again close agreement is observed.

C. SCATTERING MATRIX REPRESENTATION FOR THE PORTION

OF NON-TOUCHING FINS

The scattering matrix for a non-touching fin can be obtained by combining

the spectral domain method with residue calculus. ( The details are described in the

first part of the dissertation.) Since the filter may contain more then one fin element,

a general case must be considered here. Figure 11-9 shows that a structure consists of

n fins, which are indicated by F 1, F2, ... and Fn. These fins are separated from one

to another by distances T 1 , T 2 .... and Tn. 1. To obtain a scattering matrix

representation Sf for this portion, we consider that a substructure which consists of r

% Iel
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fins F1 and F2, with spacing T1. The substructure is shown in Fig. II-10. The

scattering matrixes of fins F1 and F2 , Sfl and Sf2, are obtained by the method given

in Part one. With the scattering matrix notation described above, each of these

matrices contains four submatrices and can be written as

Sf 11l Sf 1 12 -

Sf1 =

Sfl21 Sf122 ( 11-27)

Sf211 Sf212]

Sf 2 = ,Ff221 Sf222 (11-28)

With the knowledge of the scattering parameters for a single fin, the

generalized scattering matrix technique is applied to obtained a scattering matrix of

this substructure. The concept is that of multible-reflection phenomenon. If a wave

from Region A is incident upon F1, fields will be partly reflected back into Region A

and partly transmitted into Region B. After traveling a distance T1, a part of the wave

transmitted into Region B is reflected back and the remaining part is transmitted into

Region C via F2. This process continues until the reflected wave dies out. This

multiple-reflection phenomenon between the F1 and F2 implies a matrix combination

process that leads to the scattering matrix for the substructure.

In Region B of Fig. II-10, the smaller waveguide section with length T1 ,

operated below its cutoff frequency, is represented by the matrix ST1. The elements

' %

%* 1% :1

SU,. .
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of those matrices are easily obtained from the transmission line equivalent circuits of

the waveguide, in which the characteristic impedances are imaginary. Since no .-

propagation modes exist below cutoff frequency, this waveguide section in the

equivalent circuit acts as a lumped reactance. The wave travels a distance T1 in this
,P. w*

guide so each mode is multiplied by a exponential decay factor exp(-KlizdmnT),

where d = h or e represent TE or TM waves, respectively. In more detail, ST1 can

be written as

0 St1

Stl 0 (11-29)

where the submatrix Stlis given by

exp(- K IzhlOTI) 0 0

0 exp(- iiizh2 T1)

StI= p.

exp(- K izeOT1) -,

0

0 exp(- KIizePQT1)

(H-30)

The combination of Stlwith Sfand Sf2 results in the scattering matrix S,

in Fig. 11-9 that represents the cascaded structure. The algebraic process is shown in

Appendix E. The elements of matrix Sl are given by "'."

el-
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SAA = Sf 1 1 1 + Sf112 Stl U 2 Sf211 Stl Sf 1 2 1

SAC Sf 1 1 2 Stl U2 Sf 2 12  ,s

SCA= Sf221 Stl U1 Sf121

Scc =Sf222 + Sf 2 2 1 Stl U1 Sf 12 2 Stl Sf 2 12

U1 = ( I - Sf122 Stl Sf211 Stl

U2  ( I- Sf21 1 Stl S f122 Stl ) '1  
C

where I is the identity matrix. In the next step, we consider the substructure that

consists of fins F1, F2, and F3 with spacing T1 and T2 . The combination of F1, ,

F2 , and T1 is now expressed by matrix S1. Using ST2 and Sf 3 to represent

scattering matrices of T2 and F3 respectively, we obtain the matrix S2 of this

substructure in the same way as that of deriving matrix S1. The same procedure is

repeated until the matrix Sf is obtained (Fig. 11-9).

'

D. SCATITERING MATRIX REPRESENTATION OF CASCADED

SECTIONS

The side view of the filter can be now represented by Fig.II- 11. The

double-step junctions are described by scattering matrices Sd1 and Sd2. The

capacitive element of the filter is the portion of the non-touching E-plane fins, which

is represented by scattering matrices Sf. The matrix ST represents the evanescent

mode guide section, and it can be found in the same way as ST. Since Sdl, Sd 2 ,

%.%
k.N
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Sp and ST are all known, the overall matrix S, which characterizes the filter

structure, can be determined from these scattering matrices by the generalized

scattering matrix technique. The elements of the matrix S are given by:

I Iix S12

S21 S22 ~ J')(11-31)

where the submatrices SIP, Si 2, S21, and S22 are repraesented by:

S12=5 d112+ 5D'lSV

S21=Sd112+ SD 1 5SP

S22=d111 +Sdll2SD'ISQ

SD=(I- StSfjl St~d122 (I t~f22t~d2ii

St 5f12St 5 d2ni St f21 5 t d122

SU StSfi I StSd 121 1I - St Sf22 St d21 ) +

St SfI2 St d211 St Sf2l StSd 121

SV t Stf 12 St Sd212 (I - St Sf22 St Sd21i i +

St~f12S5 t~d2n1 St~f22St~d2l2

SP I - St Sfi iSt Sd122 )St SfI St Sdl2 +

St Sfii St Sdl21 St Sf2i St Sd122 -

SQ I (- SS~ S 1  S St Sil Stuid2 2 ) t f22Std212+

St Sf12St Sd212 St Sf21 St Sdl22 t.
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Ill DESIGN EXAMPLES AND DISCUSSIONS

The behavior of a waveguide below cutoff is basically that of an inductive

element. Capacitive elements are needed for a bandpass filter. The non-touching

E-plane fin may be represented by its equivalent r-network ( Fig. 1-2 (d)). The

element values in the equivalent network can be found from Sf. In principle, the

width and height of the fin have to be chosen such that X2 (in Fig. 1-2 (d)) is

negative, equivalent to a shunt capacitor. ',.,

Several filters have been designed by the procedure described above. The

design procedure can be used in a wide frequency range. Howevre in this study,

only bandpass filters operating in Ka band have been considered. In the following

discussion, the larger waveguide is WR-28 (7.11 mm x 3.56 mm) while the smaller

waveguide is WR-15 ( 3.76 mm x 1.88 mm). The center frequency is the most

important quantity for design of a bandpass filter. Attention is first directed to how

the height and width of the single fin, and the distance between the edge of the fin

and the step junction affect the center frequency of the evanescent filter. ""

Figure. I1-12 shows the relationship between the height of the fin and the

center frequency for a filter with the E-plane fin supported by a Duroid substrate

(dielectric constant s = 2.2, thickness h2 = 0.127 mm). The center frequency

decreases as the height d of the fin increases, because as d increases there is more ,'-inI

electric energy stored in the gap between the fin and the wall of the guide. This

corresponds to a larger shunt capacitor in its equivalent network while the series

VU
%,°U•
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inductance X1 exhibits little change.

Figures 1-13 (a) and (b) show the relationship between the width of the fin

and the center frequency for a fin with a fixed height. The wider the fin, the lower

the center frequency is. The wider fin leads to a larger capacitance and inductance in

its equivalent circuit and hence a lower resonant frequency. ( See Fig. 1-12)

The insertion loss versus the frequency for different distance T of the filter . -

with fixed width and height of the fin is shown in Figs. 11-14 and 11-15. In Fig.

11-14 the fin is supported by a Duroid substrate while in Fig. 11-15 there is no

dielectric substrate. When the fin is separated away from the step junction, the .

center frequency becomes higher and the curve becomes steeper. This phenomenon

can be explained as following. To simplify our discussing, we assume that only the

TE1 0 evanescent mode exists in the smaller guide containing a narrow fin without

substrate. The waveguide can be described by a simple transmission line equivalent

circuit with imaginary characteristic impedance Zo = jXO (Fig. 11-16 (a)), or in terms

of its nt-equivalent network as shown in Fig. 11-16 (b). The fin is represented by 5,. -

the equivalent T-network (Fig. 11-16 (c)). If the value of XI is small compared to X0,

then the equivalent circuit of the filter may be expressed by Fig. 11-16 (d), where X.-

is given by

X0 = 120:n /(a Q(X/c) 2 1) (11-32)

The propagation canstant of the TE10 mode, y, is given by

,= 2x4J 2)-1 / . (1-33)

%5

/l
k : g :: i 

!
: 

"
? i: I : =' ? :k • • "- ?J "= - r , ; ] . ", : .
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in which X is the free-space wavelength and X is the cutoff wavelength.

The resonant frequency of the filter in Fig. 11-16 (d) is mainly determined

by X2 and the parallel inductance Lo-= jXocoth (0.5yr). When T becomes larger, Lp.

becomes smaller while X2 is unchanged. Hence the resonant frequency becomes

higher. If T is large enough, Lp approaches to jX0 since the term of coth(O.5yr)

tends to 1. Hence for large T, the center frequency of the filter approaches to a

certain value. Also the curve becomes sharper when T increases, since the coupling

between the fin and the step is weaker.

With the data presented above, it is now possiple to design a filter with one

fin element. Fig. 11-17 shows the results for a filter designed in Ka band using one

fin element without a dielectric layer. The solid curve represents the results obtained

by this analysis and the dashed line indicates the measured data. They are in good

agreement. Figure 11-18 shows the results of the filter with the E-plane fin

supported by a Duroid layer. Once again agreement between theoretical prediction

and experimental data is quite good. The small deviation of the insertion loss

between theory and experiment at the center frequency comes from the metal and

dielectric loss.
Figure 11-19 shows the calculated response of a filter that consists of two

equal E-plane fin elements on a Duriod substrate. The height of the fin, the distance

from the edge of the fin to the double-step junction, and the spacing of the two fins

are the design parameters. The 3 dB bandwidth is about 1.6 GHz. It is noted that

the steepness of the out-of-band insertion loss curve on the higher frequency side in

5'

'.

I,-
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Fig. 11-19 is almost equal to the one or +he lower frequency side. This happens "

because the waveguide below its cutoff frequency acts like a lumped reactance.

In general, wider bandwidth and better transmission performance can be

achieved by increasing the number of fins. For a multi-fin structure an optimization

procedure similar to [161 may be used to optimize the performance of the filter.

Alternatively, a filter synthesis can be used to find the required equivalent circuit

parameters in the filter. The necessery fin dimensions and fin spacing can be found

from a look-up table. The center frequency can be controlled by the dimensions of

the fins and the distance between edge of the fin and the double-step junction. The

shorter the height and the narrower the width, the higher the center frequency. Also

a longer distance from the edge of the fin to the double-step junction leads to a

higher central frequency. The height of the fin is the most sensitive parameter to the

center frequency. For instance, in Figs. 11-13 (a) and (b), if the width of the fin

chages by 0.1 mm, the certer frequency shifts about 0.5 GHz, while the variation -.

of 0.05 mm on the height corresponts to about 1 GHz frequency changing (See

Figs. 11-12 (a) and (b)).

Since the non-touching fins can be produced by photolithographic

techniques, fine tuning is normally not required.

-,
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p- T jxoSinh(-'T)
--- ---- x- jX

(a) jxofoth(,YT/2) (c) (C),

(b)

1x~inh(YT) jx~inh (Y T)

2,

-jx

jxocoth( YT/2)

(d)

Fig. 1-16

(a) Transmission line equivalent circiut for evanescent mode waveguide

(b) irt-network equivalent circiut for evanescent mode waveguide

(c) T-network equivalent circiut for metal fin

(d)A simplified euqivalent circuit of the evanescent mode waveguide filter
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IV CONCLUSIONS

The analysis and design of evanescent mode waveguide filters with

non-touching E-plane fins are presented. In the analysis, the fundamental mode as

well as the higher order modes effects have been taken into account. This is

important in an accurate filter design. The filter designed in Ka band has been tested

and good agreement between the measurement and the theory is observed. It is

believed that this kind of filter will be useful in the millimeter-wave frequency

region. "
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APPENDIX A. CLOSED FORM EXPRESSION OF GREEN'S FUNCTION

IN THE SPECTRAL DOMAIN *,-

According to [9], the TM-to-x (LSM) and TE-to-x (LSE) equivalent

transmission lines for the E-plane strip described in Fig. 2 can be drawn in Fig. A-i1. '

Here,

+, a #+2 - 1
2 C A-i1

(A-2)

The driving point input impedance Ze for the TM equivalent circuit is given by

___ A-4

where

y- YrM3 cothy 3h3 A5

= -M y 2+ y'cothy2h2  CA-6)
Y2hy '+ YT2 cothy2h2

y- y.,m1 cothyjh1. (A-7)

Notice that ye and ye are input admittances looking left at x =h, and x =h, +h2

eg.

respectively, while y 2r is the admittance looking right at x =h, + h2 . Similar

equations can be written for the TE equivalent circuit:

%* %

'J'~~. 'r ?,'. F -
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-k ____ A-8
2 +Y2, -

y2%7 - YwzCthy~h3-

A.( A-10)
A -yrleothylh,

A M y 2 + y'coth j2 h2  -I
Y2- Y1 + YTF2COthy 2h2

Finally, the Green,s functions in the spectral domain can be represented by Zh and
Ze as follows [8]:

G ( A-13

-ZN.2 + (,VY A-14 )

where

NY 2(2A-15)%
Va2+3 1 *h */2+/2W

Note that the denominators of Zh and Ze are the eigenvalue equationn of LSE and
LSM modes.

Y1 IM 'ZJTt, Y3.ZTM3 YhE Y2 , 7Z1 ~ Y1.Z TES77

Fi.A- I The TM and TE equivalent transmission lines for the E-plane strip

%..



84

APPENDIX B. EXPRESSION OF NORMALIZED REACTANCE X1 AND X2

The equivalent circuit element values of the non-touching E-plane fin are

derived as follows. In Fig. B-1, the normalized input inpedance Zin can

be expressed as

Zot
7-jX 2 ( =jjX 1 )

I +j(XI +X 2 )

j X1 -X, (X1 -X 2 ) +jiX 2 (1 +jX1)

1 + j(X + X2 )

Gin + j Bin

where

1 +j(XI +X 2 )
Gi+j =i (B-2)

j (X 4 X2 ) - , X(XI +2X 2)

Equation (B-2) can be repressed as

1 +j (XI +X 2 ) =j Gin(XI +X2)-Bin(Xi +X 2 ) N4'.N4

- Gin X ( 1 2 2 -jB~~ 1 X+ 2  (B- 3)

The real part and imaginary part of the left hand side of the Eq. (B-3)

should be equal to those of the right hand side, a set of coupled equations is obtaind: 4

'4.
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Gin (XI +X2) -BmnX(XI +X 2 ) (XI +X 2 ) (B-4)

Bin(XI +X 2 ) + Gin X (X + 2X 2 )4 (B-5)

X, and X2 are found by solving the Eqs. (B-4) and (B-5). The result is given by:

Bin___ Gin -

X2 B;+G -G B% +G3-G (B-6) A

X ~ in+~); 2  (B-7)

JKI

ixi

- xX 21 (1j1  jX

z 
I

Zi I ~+ j (X 1 + X 2 )

Fig. B-I Equivalent circuit to find the normalized input impedance.

V* . . . . . . .
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APPENDIX C. NORMALIZED COEFFICIENTS OF THE EIGENFUNCTIONS

IN REGION 11

In reference to Fig. 11-4 and Eqs. 11-3 and U-4, the tangential fields in%

Region H1 are given by

=ll 42/D + (1 j/icoej) 2' D)xay

=- Xk 1 1zhm(-A1 1mn + Bll 1 n) Pl1 1 n -

m=I nk=O

(1/jco Fj e-OY, X, (nn/b)cos[nir/b(y-yl)I (-C11jm 1 + Dj1 1 n) aTm! ax S..

m=O n=1
(C-i)

=l~ a4~1 / ay + (I Iic~ee) a2VH / axaz N

00 00

7, - (n~c/b)sinjn~t/b(y-yj)I (-Al1 1 n + B1j, 11 ) R1 1mn + ,

m=1I n=O

00 00 5.

m=O n=1
(C-2)

H1= aOV11 az + (1 /jc~i) a)2011 axay

00 00

= Xkuzemn(-Cii + D 1 1 )Q 1
m=O n= I

w0 00

(I /jo41 0 ) X(nir/b)sinrnit/b(y-y I)] (Al1rn+ Bilmn)aRrn/ ax -

m=1 n=-O
(C-3)

ViS
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Hu1 = -a-V11 a y + (I /i(Og) a 2~ /j axaz
cc 00

=-XX(nir/b)cos[nir/b(y-y 1)] (C 1 1mn + D1 1mn) Tjjhn +

M=0 n= I

00000

(1 /jo4) )Y I jzm (-A1 1mn + Bj1 1 n) sin[n7cfb(y-yj)] aRm! ax

m=1 n=O
(C-4)

where

A1 1l = a ljmn~exp (-k 1 1hrnz), B1 1j = b 1 1mnexp (kiijzmnz)

Cm = cliw11 exp (-kizemnz), DI1 1 n d Ijmiiexp (k~emz

(C-5)

The following equations are obtained by matching the tangential fields at the

interface x x, + h, and x x, 4h 1 + h2.

NrIi = NruIImsif (kllxlhm hj) (C-6)

kIIx2em Nt112m = kujI~iem Ntilmsin (kjixIem hj) (C-7)

e 2Nt112m = EiI WImCOS (kiixIem hj) (C-8)

kIIx2hm Nrfl2m = kllxihm NriiimcO (klxlhm cos(k) (C-9)

Nr1I3mif (IIx3hm h3)

= r112msi (kx 2 m h2) 4- NrII2mCOs (kIlx2hm h2) (C-10)

kIjx3em Nl~sn(jxe

- kIx2em [Ntll2msin (kIIx2em h2) -NImCS(fxmh 2 A] (-l
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-C3Nt113mCoS(kllx3em h 3)

1 I2MC'OS (kIIx2em h2) + NtiI2MS~lk ~ h2)] (Ci2

kIIX3hm Nr113MCOS (kp~x3hm h3)

=kllx2hm IINrlI2mCOS (kljxhm h) - Nrjj~msif (kI2em h2) (C-i13)

The coefficients Nrnj and Ntuij are normalized. such that

J R,.(x)dx=1I and J T1,(x)dx1 ( C-14)
X1 X1

Normalization leads to the results

Nriiim =0.5 ( 1+ SMO) (t.5h1 -O0.25sin (2 kIlxlhm hl)/ kIjxlhm J+

[kIIx3hm cos( kIIx3hm h3 )j2

f xI hm cos( klix Ihm h 1)cos( kI~X2hm h2) -

k~xh sin( kIxm h1)sin( kIjx2hm h) 2[0.5h3

0.25sin (2 kIIx3hm h3)/ kIIx3hm I + [sjin( kujxIhm h 1)]2

0I .5h2 + 0.25 sin (2 kflx2hm h2)/ kIIx2hm] +

fkflx1hm cos( kIlxhm hl) / kIx2hm.]2

[052 -0.25sin (2 kI~x2hmh)/kxhm+

sin( kilxlhm hj) kIlxlhm cos( kllxlhm hl)/IkIlx2hm

Isin( kIIx2hm h2)]2 -1/2 (C15)
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Ntim = 0.5 (1+ Smo) tI0.5h, + 0.25sin (2 kiixiem hl)/ kiixiem -i /E+

[e-3cos( klIx3em h )] 2 1 e cos( klxI iem h 1)cos( kI~X2em h2) -

F-2kllxiem 2)sin( kllxiem h )sin( kIIx2em h) -1 kIjx2em J -3

[I0.5h 3 + 0.25sin (2 kflx3em h3)/ kjIx3em I+

Akxe hsin( kixe hl)/ kIxe h]2 p_2~

[0.5h 2 - 0.25sin (2 kIlx2em h2)/ kIlx2em] +

C ~cos( kllxlhm hl) /E21j 2 /p2

[0.5h2 + O.25sin (2 k~lx2hm h2)/ kIjx2hm] +

-knjxiem hsin( kiixiem hl) / kiix~em h] [ecos( kIjxhm hl)

The othercoefficients such as Ntfl2m, NrI12m... can be obtained from Eqs. (C-6)

to (C- 13).

I
4

2%..
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APPENDIX D. DERIVATION OF THE SCATTERING MARTIX

FOR THE DOUBLE-STEP JUNCTION

In reference to Fig. 11-3 and Eqs (1-3) to H 1-24), the tangential fields in

Region I can be written as

Ely 4? 1 /az + (I /jo) a2V 1 /axay

M N-1
-- XkIzhmn(-Arrm + BImn) PImn-

m=1 n=O
M-1 N

(1/joe0 )Zi 1albl) sin(mirx/al) cos(niTy/bl) (Clmn + Imn)
m=0 n= I

(D-l)

E = (I / jco a,2 / DX2+ k, 2 ) f

M-1 N

-(1/jo) XX[k 0
2- (m~/ al)2] (C 1mn+ D 1mn) QImn

m=O n=1
(D-2)

=l O-V/ az + (1 /jog0 ) a201 iaxay
M-1 N

- X n(-jm + Dm) Qiinn -

m=O n=-_I %-

M N-1

(/jog±0 ) N~m~nc/albl) cos(mntx/al) sin(nncy/bl) (Almn+Blmn)
m=1 n=O

2 /~2 2(D-3)

M N-I

= (1/jwp. 0 ) I Y[ ko,2- (mic /a 1)2) (Almn+ Blmn) Phnn

m=1 n=-O
(D-4)

where
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Almn = a jmnexp (-k 1zjmz), B 1j = b lImexp (kzhmz)

Cjn= cjmnexp (-kzemz), Dmi= d Imnxp (kzemnz)

(D-5)

In the Region 11 the tangential fields are given by

Ejj 4- / az + (1I / coeoFs) a2WI~i / Nay

P Q-1
- Y- kflzhpq(AIIp + Bjipq) Pllpq + (l/O)xo)NvIIq*
p=1 q=O%

P Q

I I(1./e (x)) (qirlb)costqir/b(y-yl)) (-CnN + DUNq) aT1 / ax

pmO q=1
(D-6)

E=~ (1 Iicoej) (a / x24 ku'II

-(1fjcoeo) y (kj 2 -kjp 2 ) (Cnlpq+ DUNIp) Q11pq/ej(x)

p=Oq=1(D-7)

Hy= a~V, 1 /a + (1 Ijc~o%) a2 11 / Nxay

-LLklzepq-Clpq + '-'Ipq) Yllpq -

p=O q--
P Q

(1 /jeog) I I N1 1 q(qir/b)sin[qir/b(y-y 1 )] (AIINq+ Bnpq)aRV/ ax

P-1 q=O
(D-8)

=jj (I /jwpL) (a2 / aX + k1 1 ) i

P Q

=(ljo%) I I ( k1 j2 -kn ip 2 ) (A]UN+ Bljpq) PjjpqN

P=I q=O

(D-9) U%
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where

A =p a ]gpqexp (-kylzpz). BUNp = b flpexp (kngzhpz)

CnNq =c~pexP (-kleNz), DUNq = d ],pep (klNpz)

Match the tangetial fielde atz =O0and in aA 2 leads to (-0

I [ k0 2 (ii / al)2 ] (cjmn+ d1mn) Qm
m-O n=1

P Q
I j[(q/)- ~ze2 (clnN+ dluN) Q1lp Ijx

p=Oq7-1
(D-11)

M N-1
SZk 1zhm(-am + bm) Pm +

m--l n=O
* ~~~~MN NI~(n/ab)csiyb)

(1/oxoyl 1 NemnmM2ajb) sn~nx/a) cs~ncy/l)(cImn + mn

m=O n=l
P Q-1L

1 7, kllzhN(-a]ElN + bulpq) PuIpq - (l/jcoeZ)Nvllq'

p=l q=O
P-1 Q

IX (qnr/b)cos[qic/b(y-yl)] (-cjjp + duNp) aTJ/ ax /ix
p=Oq--1

(D-12)

M N-1

k02- (m~c / a1 )2] (aj 111+ bl1 n) Pimn
m=l n=-O

P Q-1

£(qn/b)2 k 1  P2) nNP

pml q-0
(D-13)

10
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M- N + d1 m) Qy~ -

tn=O U-1
MN-i

M=I n=O
P-i Q

= ,Z kjzp -nq+ lp)Qp
pmOq=1

P Q

(I / jo4IL) Z Nflq(qic/b)sifl[q1b(y-yi)I (allpq+ bTj1,q)ayp ax

p-I q=O(D-14)

After applying the orthogonality of the eigenfunctin, following equations are obtained

M N-i M N-i
S£Maj(mln,pq)amnVbl(pq)bnpq= -7_ 1 Ma(m,n,p,q) bm + Vbfl(p,q) anlpq

mmitn- m~-i~'O :1
(D- 15)

P-i Q P-i Q

-17 Z d mp~j~v~nq I = Z M(rnp,q) cdUN - Vci(m,n) djmn

(D-16)

M N-1 M-1 N
XZ ,Mb(mn,p,q)amn+l I MCI(m,n,p,q) cbmn Nall (p,q) bllpq + VdII(P,q) dnipq

m--I~n=O m=sO.n=1

M N-I M-1 N

=-17, Mbi(mn,pq)bbn+l Y. Mel(p,n,pq)dlmn+Vaj(pq)aIjpq+ Vd1 1(p,q) cIIpq

m-I.n=O m=On-I
(D-17)

Pi P-i Q
7XXMbfl(p,q~mn) b~gp+l I Mc11(p,qm,n) dlpq Vaj (mn)ajm-Vdjj(m,n) c 1 m

P Q-1 P-1 Q

=7 Mbfl(p,qm,n) a1 rp-7, I MCH(p,q,ni,n) c~lq+Va1 (ni,n) by n+VcU(m,n) d~m

p-i1q-O p-O.q-1
(D-18)

or

S,*,~S



94

Maj(mnpq) = r / 2 al)2] J dy f dx Plm(xy) PIIN(x,y)

y1 4b x1 +a

Mdjyj(m,n,pci) =[qrlb)
2- ~ 2  yId ~(~)Q~,~~) ~x

Mb1Qn,n,p,q) ylib xl+a

=Njhmmn1c2I(albl jcoIL Nile ) dy J dx Qjm(x,y) QIINq(xiy)/ Ej(x)

y1  Xi

yi+b xl+a

MC1(ni,n,p~q) = nnl I dy I dx Qlnm(x,y) QTjpgxY) /Ej(x)

YI XI
y +b x1 +a

MbII(m,n,p,q) = kupqidy J dx Qlmn(xy) %QU(xy)

=Nvyjqq7c/ acoeob) I dy J dx cos[qic/b(y-yl) Pjmn(x,y)aTup (x) N ex (x

Vbil(P,cl) - q7UI) 2- k2Ijzepq

Vci~mn) = ko2  nnIa)

= qn'b)2 - k2lhzepq

Va(P~q) yj+b X1+a

=N~uqqr./ Oo*0 b) J dy f dx sin[q7Wby-y 1) Q11pq(x~y)aR 1 p(x,) Iax (x)W

Yi XI
Vb11(p,q) =knjzpq

Vd1m,n) = lz n%

zr1



95

Vejjm~n) = mnxc21(albl jmoE)

Equations ( D-15 ) to ( D-18 )may be written in miatrix form

1~i0-VbII 0 0 bll 0 m

0 Vcl 0 -MdI Cm 0 -Vc1 0 MdJ Dm

MbI McI Nall VdiI B.UN -MbI McI Val Vdji AIIpq

V4a'dIH Mbll MCI, DUNp Vl Vdjj MbII -McU C11pq

(D-19) i

where May is a matrix of dimension of PxQxMxN and is given by:

MdlO1,O), May(1,O,1,1) ... (1,O,M,N-2), May(1,O,M,N-1)'

Mdl(,,,O), May(1,1,1,1) .. May(1,1,M,N-2), May(1,1,M,N-1)

Ma1(2,O,1,O), May(2,O,l,1) ... Maj(2,O,M,N-2), Mai(2,O,M,N- )

Maj(2,l ,1,O), May(2, 1,1,1) -.. Maj(2,1,M,N-2), Maj(2, 1,M,N- 1)

The dimensions of matrix Mdg, MbI, Mci , Mbll,and MCIn are PxQxPxQ,

Mx.NxMxN, MxNxMx.N, MxNxPxQ, and MxNxPxQ, respectively. The VbUl is a

diagonal matrix of PxQxPxQ. It is represented by
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V 11(0,0) 0 0 ... 0 0
0 VbIi(1,1) 0 ... 0 0
0 Vbll( 2 ,2 ) 0

Vbfi=

0

0 Vbll(Q-2,Q-2) 0

0 0 0 VbII(Q-1,Q-1)

Other diagonal matrices such as Vci, Val, VbTT ...etc. may be obtained similarly.

In Eg. (D-19), Ain , DHpq, ... are the coefficient vectors of dimensions of

MxN, Px Q... and so on. For instance, Ain is a vector of dimension of MxN and .,

is givenby

Amn= a1 10, alll ' ... , ai20, ai2 1, aim(n2) aim(n1) T

where T indicates a transpose operation.

>. y' %'

sq

AN
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APPENDIX E. DERIVATION OF SCATTERING MATRIX FOR

THE CASCADED DISCONTINUMIIES

From Fig. -10, the following matrix equations can be derived:

R(A)1 Sf111 SMl2' f (A)

R(2)J SSf121 SnJ I(2)} (E-1)

(3) St (3 (E-2)

rR(3)] = Sfl1i Sf2 1  (3)
R(C) Sf121 Sf122) [l (E-3)

Equation ( E-2 ) is substituted into (E-1 ) to obtain

R(A) -Sfl 11 I (A) + Sf112 St R(3 ) (E-4)

R(2) Sf l 21 I (A) + Sf122 St R(3) (E-5)

Next, ( E-2 ) is substituted into ( E-3 ) to get

b.

R(3) f Sf211 St R(2) + Sf212 1(C) (E-6)

R(C) Sf221 St R(2) + Sf222 I(C) (E-7)

.. ]K.
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Equations (E-5) and ( E-6 ) are used to isolate R(2) and R(3):

R(2) = U Sf121 1(A) + U1 Sf122 St Sf212 1(C) (E-8 )

R ) = U2 Sf211 St Sfl21 1(A) + U 2 Sf212 1(A) (E-9 )

where

U I =(I - Sf122 St Sf211 St Y- (E-10)

U2 = (I- Sf211 St Sfl2St)-' (E-11)

Where I is the identity matrix. Finally, equations ( E-8) and (E-9) are

substituted into equations ( E-4 ) and (E-7)

R(A) = [ SIIl + Sfh 2 St U2 Sf211 St Sfl21] I(A)

+ Sfl12 St U2 Sf212 1(C) (E-12)

R(C) = Sf221 St U1 Sfl21 I(A) +

Sf222 + Sf221 S t UI Sf122 St Sf2I1 I(C )  ( E-13 ),.

The submatrixes SAA, SAC, SCA, and Scc are easily idetified from the above
equations.

.

9. C.C C. C, .
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